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products involving the out-of-band signals can appear in-band.
For example, if f; = fO/2, then the second harmonic (a second-
order product) has this property. For broad-band signals such as
thermal noise, second-order intermodulation products of this
type are incoherent with the desired signals and therefore appear
as an increase in noise at high signal levels, rather than as a
reduction in gain (saturation). However, third-order (and higher
odd-order) mixing products can be coherent and cart contribute
to the saturation. This can be expected to be much less important
than the effects noted in the first and second conclusions.

The use of (4) to analyze fully a given junction and embedding
network is especially difficult. It is necessary to solve for the
voltages and currents at all frequencies simultaneously, given the
(linear) constraints imposed by the embedding network. The
situation can be simplified by considering only the three-port
model, where the embedding network presents a short circuit at
all frequencies ~~, ~~ for which [ml> 1.; this leaves nonzero

voltages at six frequencies, three in-band and three out-of-band.

A further simplification would be to neglect all but first-order

mixing products. A solution might then be obtained iteratively by
first using the small-signal Y matrix to find the approximate
signal voltages, then using these in (4) to estimate the currents,
then using the currents in the embedding network to obtain

improved approximations to the voltages, and repeating until

convergence. This still would not treat the broad-band noise case.

It remains a difficult calculation, and the author intends to

pursue it in a future publication.

IV. CONCLUSIONS

It has been demonstrated by both analysis and intuitive argu-

ment that gain saturation in an S1S mixer results when the total

signal voltage across the junction becomes too large. It is empha-

sized that this includes voltages at frequencies outside the bands

of interest of the mixer, such as arise when the input is broad-band

noise. To obtain the largest dynamic range, the designer must

ensure that the embedding network suppresses such voltages. The

network can do this by approaching a short circuit at out-of-band

frequencies. In high-gain mixers, the largest voltages normally

occur at the output frequency (IF); in such cases, a carefully

designed IF filter can significantly improve the dynamic range.

APPENDIX

For an arbitrary time function of applied voltage V(t)= UC +
V,C( t), the expected value of current in a tunnel junction is given
by [7]

{ )
1(t) = 2Re ~’ Im ( t – t’) e’2”fq/k)~v’C(’)dT dt’ (Al)

—m

where Z~~ ( t) is the Fourier transform of the dc current–voltage

characteristic of the junction ldC( ~) with respect to transform

variable f = q( v – V~C)/h:

~FT( ~) =/m ~dc( KC + hf/q) e-’z”f’ df. (A2)
—ccl

This formula can be easily derived from [6, eqs. (2.8), (2.11), and

(2.16)]. Then if V’(t) is given by using (3) in (l), (Al) becomes

(
Z(t) =2Re ~’ IFT(t–t’)J’( aL, O, fL, ~,~’)

—w

}
R F(am, +m,fm, t,t’)F(a~, +~,f; ,t, t’)dt’ (A3)

m=—ce

where

F(a, @,f,t, t’) = ~ f Jk(a)Jkj(a)
k=–mk’=–cc

. e’(~-~’)(’nf’+~)e’’m~ ’f(’-”). (A4)

This result follows from carrying out the integraf in the exponent

of (Al) and using the identity

eiusmx ~
~ J,(a)e”x. (As)

k=–oc

Each term of the integrarnd of (A3) cmtains IFT(t – t’) and art

exponential factor involving t – t‘, but all other factors at-e

constant; carrying out this integral then leaves (4). The function

~(f), used in (4), is the analytic signa~ of Id= ( I& + lrf/q), given

by
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Variational Bound Analysis of a Discontinuity in

Nonradiative Dielectric Waveguide

J. C. OLIVIER, STUDENTMEMBER,IEEE,AND
J. A. G. MALHERBE, SENIORMEMBER,IEEE

,4/ntract —Tfds paper deseribes the application of the variational bound

method to nonradlative dielectric waveguide for the analysis of scattering

by a dielectric obstacle, in this case a rectau~prlar, air-filled discontinuity in

the dielectric center strip. Closed-form equations are obtained that can be

used directly in the design of networks usinf~ reactive components, such as

filters. Measured data~ agree well with the theoretical calculations.

I. INTRODUCTION

The application of specific properties of discontinuities in

wavegnides forms the basis of a variety of microwave devices. In

the nonradiative dielectric waveguide only one such analysis has

been reported, by Yoneyama et al. [1], where a step discontinuity

was described and applied in the design of a filter. Expressicms

for describing the network are not given.

In this paper, the variational bound (VB) method described by

Aronson et al. [2] is used to analyze the scattering from a

rectangular hole through the dielectric center conductor of the
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T

Isometric view of the rectangular hole in the waveguide center dielec-

tric strip

NRD guide. A variational bound is obtained on q, the phase
shift which measures the amount by which the asymptotic solu-
tion for the fields in the guide in the presence of the discontinuity
is displaced relative to the guide without a discontinuity. A major
advantage of the procedure is that a closed-form expression for
the equivalent network is obtained. The design of networks
making use of reactive elements is consequently greatly sim-
plified, because it eliminates empiricaf determination of element
values.

II. ANALYSIS OF A SQUARE DISCONTINUITY IN NRD

WAVEGUIDE

Because the NRD waveguide is an open structure, it has only a

finite number of discrete solutions of Maxwell’s equations, while

the rest of the eigenvalue and eigenfunction spectrum is continu-

ous. If the structure is boxed, as shown in Fig. 1, the continuous

eigenvalue spectrum is discretized, and only discrete solutions to

Maxwell’s equations are permitted. It is therefore now possible to

expand any arbitrzuy electromagnetic field into the eigenfunc-

tions or waveguide modes, using the orthogonality of the modes.

The walls are, however, placed far enough away so as not to

influence the propagation constants of the surface wave solu-

tions, which correspond to the discrete solutions in the open

NRD waveguide. Therefore they will not influence the theoretical

results obtained.

Fig. 1 shows an isometric view of the guide, and also defines

the dimensions. The analysis closely follows that outlined in [2].

In the absence of the obstacle, the odd and even parts of the total

electric field are given by

l?~e=e(x, y)cosk=z (1)

ll~O=e(x, y)sinkZz (2)

and e is the form function of the dominant mode, which is a

TMVll mode. The totaf field is obtained as

E = ET, + jETO. (3)

In the presence of an obstacle the asymptotic forms (z -+ m) of

the fields are given by

~e=Cee( x,y)[–sin k=z+cotq, coskZz] (4)

EO = COe(x, y)[coskzz +cotqOsink=z] (5)

where q, and qO are the even and odd mode phase shifts

Fig. 2. Equivalent circuit of waveguide discontinuity.

associated with the discontinuity. The equivalent network param-

eters defined in Fig. 2 are related to q, &d TOby

xl = tanqo

X2 =:(tmqe +Cotqo).

Using the variational bound method [21, bounds

(6)

(7)

on q, and TO
may be obtained, from which it is possible to calculate Xl and
Xz j The procedure starts by solving the differential equation

d2f

[ 1—+ f(z) k~–f’ J+b (tr–l)k~e. edxa!y =0
dz2

(8)
–1 -+b

where k, is the propagation constant of the dominant mode, and
e( x, y) is the vector form function of the dominant TMYII mode.
This is normalized such that

~e(x~)et(x,~)dxd~=l (9)
s

where the area of integration is a cross section of the waveguide,
and e, denotes the transverse part of e. The description of the
TMYII mode is obtained from [3].

The differential equation (8) reduces to

()d2f/dz2 – V2 – k: f(z) = O. . (lo)

In this, ~2 is given by

J
~2= (c, –l)e(x, y). e(x, y)dti (11)

Sg

and the surface Sg is defined by – 1< x < t –; b<y<; b, and

lies in the discontinuity. From (11) it follows that

{ }
V2=(C, –1) jE:dS+j E~dS+j E:dS . (12)

sg Sg sg

To satisfy (9), the amplitude of e( x, y) must be

“[–~b+sinh~a( c- b)~cosh~a(c– b) 1

[1“[:’+%%”’’’+”2’” C05:::,, 2
2

(13)
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Fig. 3. Measured (dotted lines) and calculated values (sohd lines) for the

reflection coefficient and phase of the equivalent cmcuit

A is therefore the necessary normalization constant of e(x, y).

The expression for V2 follows from (12):

v2=_k2+(’r-’)k;
A “(kfl’z/’[’+si:fal

W7-[w”[’+si:::
1

1[ 1sinllb n B 2
-b+— – –.–
2 2/3 a er

“[’-sivl”[:b-%ll

III. EXPERIMENTAIL RESULTS

The reflection coefficient and phase angle of the equivalent T

section of two rectangular holes, of dimensions 10X 20 mm and

10x 10 mm, respectively, were measured, and the data are plotted

in Fig. 3(a) and (b) together with the theoretically calculated

values using the equations developed above. The agreement be-

tween the various sets of values is good.

IV. CONCLUSIONS

A theoretical analysis that makes it possible to calculate the

equivalent circuit for a rectangular discontinuity in NRD wave-

guide has been presented and verified experimentally. A major

advantage of the theory is that the ecpations are in closed form.
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After substitution of A into (14), a parameter K is defined as

K2=–k:+V2.

The differential equation (10) now is

d2~(z)/dz2 – K2f(z) = O (15)

and the solution to this is

f(z) =fe+fo (16)

where ~, and jO are the even and odd parts of \(z), and

f,= Decosh Kz f.= Dosinh Kz. (17)

If (3), (4), and (17), together with their derivatives, are equated

at the discontinuity y boundary, which is a static approximation,

then the even and odd mode phase shifts are given by

– sin k,d + kZ/K coth Kd cos k,d
cot q, =

– kZ/K sin k,d coth Kd – cos kzd
(18)

cos k, d + sin k,d k, /K tanh kd
cot ‘qO=

k, /K cos kzd tanh Kd – sin kZd
(19)

where the wavenumber in the z direction is k=. The transverse

wavenumbers, a and C, are solutions of the transcendental

equation

fltan;~b=c.a (20)

subject to the constraint

a2+~2=k:((r–1) (21)

while the guide wavenumber is calculated from

kZ= k2–(m/a)2–~2. (22)

It is now possible to calculate the equivalent admittance net-

work for holes of any given dimension using (6) and (7).

waveguide, Part I: Theory;’ IEEE Trans. Antennas Propagat , vol. AP-32,

pp. 1335-1340, Dec. 1984.

(14)

Frequency Normalization of Constant Power

Contours for MESFET’S

J. P. MONDAL, MEMRER, IEEE

Abstract —The constant power contours have been measured on

MESFET’S with different doping profiles over the frequency range $-16

GHz for a fixed input power level at different bias points. At each

frequency, the corttonrs are normalized with respect to the load for

maximum power output; within experimental accuracy, the uomralization

holds fairly well independent of frequency under certain limits.

I. lNTRODUCHON

The design of a power amplifier over a wide frequency range

involves, in general, the measurement of constant power contours

and constant efficiency contours at different frequencies at some

given bias point. The measurement of these contours at different

frequencies is very time-consuming. Moreover, one may not have

the experimental setup to find the contours at the frequencies of

interest. The present investigation shows how these curves can be

predicted at other frequencies under certain limits. The concept is

an extension of small-signal mismatch circles. In case of large-sig-

nal applications, the mismatch contours are no longer circles,

because of the way the saturation current and breakdown voltage

limits are attained. The contours present some reflection coeffi-

cient loci with respect to a given load. The idea was first

proposed by Cripps [1]; it has been extended in this paper over a

wide frequency range.

In the present case, the contours are normalized with respect to

the conjugate of load that gives maximum power with a given

input power. The conjugate of optimum load impedance to yield

maximum power output may be represented at any given

frequency by a parallel combination of R and C. The values of R
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