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products involving the out-of-band signals can appear in-band.
For example, if f; = f, /2, then the second harmonic (a second-
order product) has this property. For broad-band signals such as
thermal noise, second-order intermodulation products of this
type are incoherent with the desired signals and therefore appear
as an increase in noise at high signal levels, rather than as a
reduction in gain (saturation). However, third-order (and higher
odd-order) mixing products can be coherent and can contribute
to the saturation. This can be expected to be much less important
than the effects noted in the first and second conclusions.

The use of (4) to analyze fully a given junction and embedding
network is especially difficult. It is necessary to solve for the
voltages and currents at all frequencies simultaneously, given the
(linear) constraints imposed by the embedding network. The
situation can be simplified by considering only the three-port
model, where the embedding network presents a short circuit at
all frequencies f,,,f, for which |m|>1; this leaves nonzero
voltages at six frequencies, three in-band and three out-of-band.
A further simplification would be to neglect all but first-order
mixing products. A solution might then be obtained iteratively by
first using the small-signal ¥ matrix to find the approximate
signal voltages, then using these in (4) to estimate the currents,
then using the currents in the embedding network to obtain
improved approximations to the voltages, and repeating until
convergence. This still would not treat the broad-band noise case.
It remains a difficult calculation, and the author intends to
pursue it in a future publication.

IV. CONCLUSIONS

It has been demonstrated by both analysis and intuitive argu-
ment that gain saturation in an SIS mixer results when the total
signal voltage across the junction becomes too large. It is empha-
sized that this includes voltages at frequencies outside the bands
of interest of the mixer, such as arise when the input is broad-band
noise. To obtain the largest dynamic range, the designer must
ensure that the embedding network suppresses such voltages. The
network can do this by approaching a short circuit at out-of-band
frequencies. In high-gain mixers, the largest voltages normally
occur at the output frequency (IF); in such cases, a carefully
designed IF filter can significantly improve the dynamic range.

APPENDIX

For an arbitrary time function of applied voltage V(1) =V, +
V.. (1), the expected value of current in a tunnel junction is given

by [7]
I( t) — 2RC{ ft IFT (t__ t/) elZﬂ(q/h)f;{Vac(‘r)d‘r dt’} (Al)
— o0

where Ipp(#) is the Fourier transform of the dc current-voltage
characteristic of the junction I, (V) with respect to transform
variable f = g(V —V,.)/h:

Ier(D) = [ Lo(sc+ W/q)e " df.

This formula can be easily derived from [6, egs. (2.8), (2.11), and
(2.16)]. Then if V(1) is given by using (3) in (1), (A1) becomes

(A2)

1(:)=2Re<f’ Ier (1= ) F(ay,0,f,, 1, 1)

I F(am,¢m,fm,z,t'>F<a:n,¢:n,f,;,z,t')dt'} (A3)

m= — o0
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where

Flas fit)= Y % Jla)(e)

k=-—00 k'=—-0o

_el(k-—k')(2‘n'ft+¢)elz'lrk'f(t-—t')' ([\4)

This result follows from carrying out the integral in the exponent
of (Al) and using the identity

elesnx o i Jk(a) ezkx.

k=-o

(A3)

Each term of the integrand of (A3) contains Ipp(¢— t') and an
exponential factor involving ¢— ¢, but all other factors are
constant; carrying out this integral then leaves (4). The function
I(f), used in (4), is the analytic signal of I, (V. + hf/q), given
by

i(f)=2 fo P L (1) e s, (A6)
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Variational Bound Analysis of a Discontinuity in
Nonradiative Dielectric Waveguide

J. C. OLIVIER, STUDENT MEMBER, IEEE, AND
J. A. G. MALHERBE, SENIOR MEMBER, IEEE

Abstract —This paper describes the application of the variational bound
method to nonradiative dielectric waveguide for the analysis of scattering
by a dielectric obstacle, in this case a rectangular, air-filled discontinuity in
the dielectric center strip. Closed-form equations are obtained that can be
used directly in the design of networks using reactive components, such as
filters. Measured data agree well with the theoretical calculations.

1. INTRODUCTION

The application of specific properties of discontinuities in
waveguides forms the basis of a variety of microwave devices. In
the nonradiative dielectric waveguide only one such analysis has
been reported, by Yoneyama et al. [1], where a step discontinuity
was described and applied in the design of a filter. Expressions
for describing the network are not given.

In this paper, the variational bound (VB) method described by
Aronson et al. [2] is used to analyze the scattering from a
rectangular hole through the dielectric center conductor of the
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Fig. 1. Isometric view of the rectangular hole in the waveguide center dielec-

tric strip.

NRD guide. A variational bound is obtained on 7, the phase
shift which measures the amount by which the asymptotic solu-
tion for the fields in the guide in the presence of the discontinuity
is displaced relative to the guide without a discontinuity. A major
advantage of the procedure is that a closed-form expression for
the equivalent network is obtained. The design of networks
making use of reactive elements is consequently greatly sim-
plified, because it eliminates empirical determination of element
values.

II. ANALYSIS OF A SQUARE DISCONTINUITY IN NRD
WAVEGUIDE

Because the NRD waveguide is an open structure, it has only a
finite number of discrete solutions of Maxwell’s equations, while
the rest of the eigenvalue and eigenfunction spectrum is continu-
ous. If the structure is boxed, as shown in Fig. 1, the continuous
eigenvalue spectrum is discretized, and only discrete solutions to
Maxwell’s equations are permitted. It is therefore now possible to
expand any arbitrary electromagnetic field into the eigenfunc-
tions or waveguide modes, using the orthogonality of the modes.

The walls are, however, placed far enough away so as not to
influence the propagation constants of the surface wave solu-
tions, which correspond to the discrete solutions in the open
NRD waveguide. Therefore they will not influence the theoretical
results obtained.

Fig. 1 shows an isometric view of the guide, and also defines
the dimensions. The analysis closely follows that outlined in [2].
In the absence of the obstacle, the odd and even parts of the total
electric field are given by

(1)
2

and e is the form function of the dominant mode, which is a
TM,;; mode. The total field is obtained as

E;, =e(x,y)cosk,z
"Ep,=e(x,y)sink,z

E=E; + jE, .

3)

In the presence of an obstacle the asymptotic forms (z — o) of
the fields are given by .

(4)
(%)

where 7, and 7, are the even and odd mode phase shifts

E,=Ce(x,y)[—sink,z+cotn, cosk,z]
E ,=Ce(x,y)[cosk,z+cotn,sink,z]
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Fig. 2. Equivalent circuit of waveguide discontinuity.

associated with the discontinuity. The equivalent network param-
eters defined in Fig. 2 are related to 7, and 5, by

X, = tann,

(6)
(N

Using the variational bound method [2], bounds on 7, and 7,
may be obtained, from which it is possible to calculate X; and
X,. The procedure starts by solving the differential equation

d*f
dz?

1
X, =5(tanne +cotn,).

+f(z)[kzz—/_1[/fl:b(€,—l) kle-edxdy|{ =0 (8)

where k, is the propagation constant of the dominant mode, and
e(x, y) is the vector form function of the dominant TM,;; mode.
This is normalized such that

[ ) e(x, ) dudy =1 (9

where the area of integration is a cross section of the waveguide,
and e, denotes the transverse part of e. The description of the
TM,;; mode is obtained from [3].

The differential equation (8) reduces to

d*f/dz* = (V- k2) f(z) = 0.
In this, V'? is given by

V2 =fs(e, ~1e(x,y)-e(x,y)dS

(10)

(11)

‘ 1 1
and the surface S, is defined by — /< x <[; — Eb <y< Eb, and
lies in the discontinuity. From (11) it follows that

V2=(e,—1){LE3dS+LEde+LEZZdS}. (12)
-4 8 g

To satisfy (9), the amplitude of e(x, y) must be

1
2 : cos — Bb
A=_(Z.£) .la[lb_smﬁb]_a 7 2

a e 212 28 a

r

1
coshEB(c—b)
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1 sin Bb
’[2 MY
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00553

]_a[kg+a2]. o
coshia(c—b)

[—1b+—1 inh ~a(c - b)-cosh ~a( c—
. .
5 7 S 2a(c ) -cos 2(1(6‘ B)|.

(13)
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Fig. 3. Measured (dotted lines) and calculated values (sohid lines) for the

reflection coefficient and phase of the equivalent circuit

A is therefore the necessary normalization constant of e(x ¥)-
The expression for V2 follows from (12):

( € ) k3 sin sin2al/a
Vi=—k k
: (kB /e 1450
'1b singp] [Kk2-p2 T ,, sin2l/a
| 2 2B €, 27/a
[ 1 sin 8b B
j— + —_— - —
| 2 28 [ a ¢,
[ sin2al/a] [1 sin Bb
smdoifa) 1, snsb]) »
20/a 2 28
After substitution of A into (14), a parameter K is defined as
K*=—kZ+V2.
The differential equation (10) now is
d*f(2)/de* - K*f(2) =0 (15)
and the solution to this is
() =1+, (16)
where f, and f, are the even and odd parts of f(z), and
f.=D.cosh Kz f,=D,sinh Kz. 17)

If (3), (4), and (17), together with their derivatives, are equated
at the discontinuity boundary, which is a static approximation,
then the even and odd mode phase shifts are given by

—sink,d + k, /K coth Kdcos k_d
— k. /K sink,d coth Kd —cos k_d
cosk,d +sink,d k, /K tanh kd
k. /K cosk,d tanh Kd —sin k,d

(18)

cotn, =

(19)

cotn, =

where the wavenumber in the z direction is k,. The transverse
wavenumbers, a and B, are solutions of the transcendental
equation

,Btan%ﬁb=€,a (20)

subject to the constraint
2 + BZ

kg (e, —1)

while the guide wavenumber is calculated from

k,={k*—(n/a)’ - B*. (22)

It is now possible to calculate the equivalent admittance net-
work for holes of any given dimension using (6) and (7).

(21)
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The reflection coefficient and phase angle of the equivalent T
section of two rectangular holes, of dimensions 10 X20 mm and
10 X 10 mm, respectively, were measured, and the data are plotted
in Fig. 3(a) and (b) together with the theoretically calculated
values using the equations developed above. The agreement be-
tween the various sets of values is good.

EXPERIMENTAL RESULTS

IV. CONCLUSIONS

A theoretical analysis that makes it possible to calculate the
equivalent circuit for a rectangular discontinuity in NRD wave-
guide has been presented and verified experimentally. A major
advantage of the theory is that the equations are in closed form.
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Frequency Normalization of Constant Power
Contours for MESFET’s

J. P. MONDAL, MEMBER, IEEE
Abstract —The constant power contours have been measured on
MESFET’s with different doping profiles over the frequency range 8-16
GHz for a fixed input power level at different bias points. At each
frequency, the contours are normalized with respect to the load for
maximum power output; within experimental accuracy, the normalization
holds fairly well independent of frequency under certain limits.

I. INTRODUCTION

The design of a power amplifier over a wide frequency range
involves, in general, the measurement of constant power contours
and constant efficiency contours at different frequencies at some
given bias point. The measurement of these contours at different
frequencies is very time-consuming. Moreover, one may not have
the experimental setup to find the contours at the frequencies of
interest. The present investigation shows how these curves can be
predicted at other frequencies under certain limits. The concept is
an extension of small-signal mismatch circles. In case of large-sig-
nal applications, the mismatch contours are no longer circles,
because of the way the saturation current and breakdown vollage
limits are attained. The contours present some reflection coeffi-
cient loci with respect to a given load. The idea was first
proposed by Cripps [1]; it has been extended in this paper over a
wide frequency range.

In the present case, the contours are normalized with respect to
the conjugate of load that gives maximum power with a given
input power. The conjugate of optimum load impedance to yield
maximum power output may be represented at any given
frequency by a parallel combination of R and C. The values of R
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